LIBR 244 Exercise 2: ProQuest Dialog

Yu Ting Lin
Question Number: ___1___

1. Search Plan

Important Ideas:

```
CONCEPT 1
 AND
 CONCEPT 2
 AND
 CONCEPT 3

Nature
Breast cancer
Four types
```

Searching Style: Building block

Database(s) – by industry group or specific ones:
Healthcare databases/ 32 databases

Fields or other limiters (dates, document types, etc.):
- Publication Title
- Date
- Subject
- Document Text

Contingency Planning:
(what to do if I retrieve too little or too much?)
- If I retrieve too little: Look into retrieved articles for possible alternations for search terms. Broaden restriction on search fields might also be helpful to retrieve more results.
- If I retrieve too much: Be more specific on keywords used in search command. Adding the “exact” command can help retrieve results strictly related to the exact search terms.

Other notes:

2. Search Steps

1. Chose databases/ view by industry: Healthcare databases/ 32 databases
 a. Annotation: The article is related to breast cancer; thus I chose to search in healthcare databases.
2. Searched in advanced search mode:
 a. Exact("breast cancer") / Subject
i. After selected “Subject heading/ SU” as search field, clicked on “Look up Subjects.” Searched “breast cancer,” selected “breast cancer/ counts: 562366,” and clicked on “add to search” ii. Annotation: By searching in the Subject heading thesaurus, I was able to glance through possible subjects and then select the subject that best fit my need.

b. Exact (“nature”) / Publication title
 i. Annotation: The article was published in the journal, *Nature*; thus I restricted the search field to Publication title. I also used the “exact” command because the journal title is a common vocabulary. Without the “exact” command, too many unrelated results might be retrieved.

c. four types/ All fields + texts
 i. Annotation: The article is about the four distinct types of breast cancer. Though “four types” as a search term might not be specific enough or too specific, I decided to go with the inquiry’s vocabulary.

d. Resulted search command: su.Exact(“breast cancer”) AND pub.Exact(“nature”) AND (four types)
 i. Search result: 8 results

 a. Result: 3
 b. Annotation: The article was published in 2011 or 2012.

4. The third result matches the article described in the inquiry.

<table>
<thead>
<tr>
<th>Record #</th>
<th>Content</th>
</tr>
</thead>
</table>
| 1-1 | **Comprehensive molecular portraits of human breast tumours**
Koboldt, Daniel C.; Fulton, Robert S.; McLellan, Michael D.; Schmidt, Heather; Kalicki-Veizer, Joelle; et al. Nature

Abstract (summary)

We analysed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of **four main breast cancer classes** when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at 10% incidence across all breast cancers; however, there were numerous subtype-
associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the luminal A subtype. We identified two novel protein-expression-defined subgroups, possibly produced by stromal/microenvironmental elements, and integrated analyses identified specific signalling pathways dominant in each molecular subtype including a HER2/phosphorylated HER2/EGFR/phosphorylated EGFR signature within the HER2-enriched expression subtype. Comparison of basal-like breast tumours with high-grade serous ovarian tumours showed many molecular commonalities, indicating a related aetiology and similar therapeutic opportunities. The biological finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biological subtypes of breast cancer. © 2012 Macmillan Publishers Limited. All rights reserved.

Indexing (details)

Subject
- epidermal growth factor receptor 2 -- endogenous compound;
- genomic DNA -- endogenous compound;
- hepatocyte nuclear factor 3alpha -- endogenous compound;
- messenger RNA -- endogenous compound;
- microRNA -- endogenous compound;
- phosphatidylinositol 3,4,5 trisphosphate 3 phosphatase -- endogenous compound;
- protein Myb -- endogenous compound;
- protein p53 -- endogenous compound;
- transcription factor GATA 3 -- endogenous compound;
- X box binding protein 1 -- endogenous compound;
- article;
- breast cancer (major);
- cancer classification;
- cancer incidence;
- DNA methylation;
- DNA sequence;
- exome;
- gene dosage;
- gene expression;
- genetic association;
genetic heterogeneity; human; human tissue; molecular imaging (major); priority journal; protein expression; RNA sequence; signal transduction; somatic mutation; tumor microenvironment

Classification
16: Cancer
29: Clinical and Experimental Biochemistry

Substance
Substance:
epidermal growth factor receptor 2
CAS:
137632-09-8;
Substance:
phosphatidylinositol 3,4,5 trisphosphate 3 phosphatase
CAS:
210488-47-4;
Substance:
transcription factor GATA 3
CAS:
137878-55-8

Title
Comprehensive molecular portraits of human breast tumours

Author
Koboldt, Daniel C.; Fulton, Robert S.; McLellan, Michael D.; Schmidt, Heather; Kalicki-Veizer, Joelle; McMichael, Joshua F.; Fulton, Lucinda L.; Dooling, David J.; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.; Ally, Adrian; Balasundaram, Miruna; Butterfield, Yaron S. N.; Carlsen, Rebecca; Carter, Candace; Chu, Andy; Chuah, Eric; Chun, Hye-Jung E.; Coope, Robin J. N.; Dharma, Noreen; Guin, Ranabir; Hirst, Carrie; Hirst,
Yu Ting Lin
LIBR 244 Exercise 2

Eric 86; Pontius, Joan 86; Ayala, Brenda 86; Backus, Mark 86; Walton, Jessica 86; Baboud, Julien 86; Berton, Dominique 86; Nicholls, Matthew 86; Srinivasan, Deepak 86; Raman, Rohini 86; Girshik, Stanley 86; Kigonya, Peter 86; Alonso, Shelley 86; Sanbhadti, Rashmi 86; Barletta, Sean 86; Pot, David 86; Sheth, Margi 87; Demchok, John A. 87; Shaw, Kenna R. Mills 87; Yang, Liming 87; Eley, Greg 87; Ferguson, Martin L. 89; Tarnuzzer, Roy W. 87; Zhang, Jiashan 87; Dillon, Laura A. L. 87; Buetow, Kenneth 82; Fielding, Peter 87; Ozenberger, Bradley A. 90; Guyer, Mark S. 90; Sofia, Heidi J. 90; Palchik, Jacqueline D. 90

1 Genome Institute, Washington University, St Louis, MI 63108, United States
2 Genome Institute, Washington University, St Louis, MI 63108, United States, Department of Genetics, Washington University, St Louis, MI 63110, United States
3 Genome Institute, Washington University, St Louis, MI 63108, United States, Department of Genetics, Washington University, St Louis, MI 63110, United States, Siteman Cancer Center, Washington University, St Louis, MI 63110, United States
4 Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z, Canada
5 The Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
6 The Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States, Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology, Harvard University, Cambridge, MA 02142, United States
7 The Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
8 The Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States, Department of Medicine, Harvard Medical School, Boston, MA 02215, United States, Departments of Cancer Biology and Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02115, United States
9 The Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States, Department of Medical Oncology and the Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02115, United States, Department of Pathology, Harvard Medical School, Boston, MA 02215, United States
10 Department of Medical Oncology and the Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02115, United States, Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115, United
States, Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology, Harvard University, Cambridge, MA 02142, United States, Institute for Applied Cancer Science, Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, United States

11 Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, United States

12 Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States

13 Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States, Institute for Pharmacogenetics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States

14 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States

15 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States

16 Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States

17 Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States

18 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States, Department of Internal Medicine, Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States

19 Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States

20 USC Epigenome Center, University of Southern California, Los Angeles, CA 90033, United States

21 Cancer Biology Division, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21232, United States
<table>
<thead>
<tr>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hopkins University, Baltimore, MD 21231, United States</td>
</tr>
<tr>
<td>22 Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, United States, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States</td>
</tr>
<tr>
<td>23 Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, United States, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States</td>
</tr>
<tr>
<td>24 Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology, Harvard University, Cambridge, MA 02142, United States</td>
</tr>
<tr>
<td>25 Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States, Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology, Harvard University, Cambridge, MA 02142, United States</td>
</tr>
<tr>
<td>26 Institute for Applied Cancer Science, Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, United States</td>
</tr>
<tr>
<td>27 Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, United States</td>
</tr>
<tr>
<td>28 Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States, Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, United States, Informatics Program, Children's Hospital, Boston, MA 02115, United States</td>
</tr>
<tr>
<td>29 Institute for Systems Biology, Seattle, WA 98109, United States</td>
</tr>
<tr>
<td>30 Tampere University of Technology, Tampere, Finland</td>
</tr>
<tr>
<td>31 Cancer Genomics Core Laboratory, MD Anderson Cancer Center, Houston, TX 77030, United States</td>
</tr>
<tr>
<td>32 Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States</td>
</tr>
<tr>
<td>33 Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States</td>
</tr>
<tr>
<td>34 Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States</td>
</tr>
<tr>
<td>35 Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, United States</td>
</tr>
<tr>
<td>36 Department of Systems Biology, University of Texas MD Anderson Cancer Center,</td>
</tr>
<tr>
<td>Institution</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States</td>
</tr>
<tr>
<td>Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States, Kleberg Center for Molecular Markers, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States, Department of Breast Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, United States</td>
</tr>
<tr>
<td>Department of Biomolecular Engineering and Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, United States, Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, United States</td>
</tr>
<tr>
<td>Department of Biomolecular Engineering and Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, United States</td>
</tr>
<tr>
<td>Center for Bioinformatics and Information Technology, National Cancer Institute, Rockville, MD 20852, United States</td>
</tr>
<tr>
<td>Ohio State University, College of Medicine, Department of Pathology, Columbus, OH 43205, United States, Ohio State University, College Of Medicine, Department Pediatrics, Columbus, OH 43205, United States, Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, United States</td>
</tr>
<tr>
<td>Ohio State University, College of Medicine, Department of Pathology, Columbus, OH 43205, United States, Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, United States</td>
</tr>
<tr>
<td>Ohio State University, College Of Medicine, Department Pediatrics, Columbus, OH 43205, United States, Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, United States</td>
</tr>
<tr>
<td>Ohio State University, College of Medicine, Department of Pathology, Columbus, OH 43205, United States</td>
</tr>
<tr>
<td>Ohio State University, College Of Medicine, Department Pediatrics, Columbus, OH 43205, United States</td>
</tr>
<tr>
<td>ABS Inc., Indianapolis, IN 46204, United States</td>
</tr>
<tr>
<td>ABS Inc., Wilmington, DE 19801, United States</td>
</tr>
<tr>
<td>Indiana University School of Medicine, Indianapolis, IN 46202, United States</td>
</tr>
<tr>
<td>Helen F. Graham Cancer Center, Christiana Care, Newark, DE 19713, United States</td>
</tr>
<tr>
<td>States</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>51 Moscow City Clinical Oncology Dispensary 1, Central IHC Laboratory, Moscow Health Department, Moscow 105005, Russian Federation</td>
</tr>
<tr>
<td>52 Russian Cancer Research Center, Moscow 115478, Russian Federation</td>
</tr>
<tr>
<td>53 Cureline Inc., South San Francisco, CA 94080, United States</td>
</tr>
<tr>
<td>54 Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States</td>
</tr>
<tr>
<td>55 Greater Poland Cancer Centre, Poznań 61-866, Poland</td>
</tr>
<tr>
<td>56 Greater Poland Cancer Centre, Poznań 61-866, Poland, Poznan University of Medical Sciences, Poznań 61-701, Poland</td>
</tr>
<tr>
<td>57 ILSBio, LLC, Chestertown, MD 21620, United States</td>
</tr>
<tr>
<td>58 Ministry of Health, Hanoi, Viet Nam</td>
</tr>
<tr>
<td>59 ILSBio LLC, Karachi, Pakistan</td>
</tr>
<tr>
<td>60 Hue Central Hospital, Hue City, Viet Nam</td>
</tr>
<tr>
<td>61 Stanford University Medical Center, Stanford, CA 94305, United States</td>
</tr>
<tr>
<td>62 Center for Minority Health Research, University of Texas, MD Anderson Cancer Center, Houston, TX 07703, United States</td>
</tr>
<tr>
<td>63 National Cancer Institute, Hanoi, Viet Nam</td>
</tr>
<tr>
<td>64 Ho Chi Minh City Cancer Center, Viet Nam</td>
</tr>
<tr>
<td>65 Can Tho Cancer Center, Can Tho, Viet Nam</td>
</tr>
<tr>
<td>66 International Genomics Consortium, Phoenix, AZ 85004, United States</td>
</tr>
<tr>
<td>67 Mayo Clinic, Rochester, MN 55905, United States</td>
</tr>
<tr>
<td>68 Department of Surgery, Breast Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States</td>
</tr>
<tr>
<td>69 Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States, Department of Breast Medical Oncology, University of Texas, MDAnderson Cancer Center, Houston, TX 77030, United States</td>
</tr>
<tr>
<td>70 Department of Breast Medical Oncology, University of Texas, MDAnderson Cancer Center, Houston, TX 77030, United States</td>
</tr>
<tr>
<td>71 University Of California at San Francisco, San Francisco, CA 94143, United States, Cancer Diagnostics, Nichols Institute, Quest Diagnostics, San Juan Capistrano, CA 92675, United States</td>
</tr>
<tr>
<td>72 Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94115, United States</td>
</tr>
<tr>
<td>73 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel</td>
</tr>
</tbody>
</table>
Yu Ting Lin
LIBR 244 Exercise 2

Hill, Chapel Hill, NC 27599, United States, UNC Tissue Procurement Facility,
Department of Pathology, UNC Lineberger Cancer Center, Chapel Hill, NC 27599,
United States

74 Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263, United States

75 Department of Pathology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL 33136, United States

76 University of Pittsburgh, Pittsburgh, PA 15213, United States

77 Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States

78 Walter Reed National Military Medical Center, Bethesda, MD 20899-5600, United States

79 Windber Research Institute, Windber, PA 15963, United States

80 MDR Global, LLC, Windber, PA 15963, United States

81 Siteman Cancer Center, Washington University, St Louis, MI 63110, United States, Breast Cancer Program, Washington University, St Louis, MI 63110, United States, Department of Internal Medicine, Division of Oncology, Washington University, St Louis, MI 63110, United States

82 Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, United States

83 Center for ClinicalCancerGenetics, University of Chicago, Chicago, IL 60637, United States

84 Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MI 63110, United States

85 Department of Pathology, Harvard Medical School, Boston, MA 02215, United States

86 SRA International, 4300 Fair Lakes Court, Fairfax, VA 22033, United States

87 Cancer Genome Atlas Program Office, Center for Cancer Genomics, National Cancer Institute, Bethesda, MD 20852, United States

88 TCGA Consultant, Scimentis, LLC, Statham, GA 30666, United States

89 MLF Consulting, Arlington, MA 02474, United States

90 National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, United States

Author e-mail address
cperou@med.unc.edu
* Bonus
There are 90 authors/collaborators. On the side of each author is a small number for note, which lists out the author's affiliation in numerical order at the end. The last number is 90.
Question Number: ____2____

1. Search Plan

Important Ideas:

\[
\begin{array}{ccc}
\text{CONCEPT 1} & \text{AND} & \text{CONCEPT 2} & \text{AND} & \text{CONCEPT 3} \\
\text{Keyboard} & \text{Cat} & \text{Computer software} \\
\text{Keyboards} & \text{Cats} & \text{Software} \\
\text{OR} & & & \\
\end{array}
\]

Searching Style: Building block

Database(s) – by industry group or specific ones:
Engineering and Technology databases (21 databases)

Fields or other limiters (dates, document types, etc.):
- Document text
- Subject

Contingency Planning:
(what to do if I retrieve too little or too much?)
- If I retrieve too little: Find alternate search terms to help retrieve more related results.
- If I retrieve too much: Be more specific on keywords used in search command. Restriction on Subject might also help to limit retrieved results.

Other notes:

2. Search Steps

1. Chose databases/ view by industry: Engineering and Technology databases (21 databases)
 a. Annotation: The inquiry is about a computer software invention; thus I chose to search within the technology industry databases.

2. Searched in advance search mode:
 a. Exact("software"): Subject heading
 i. Annotation: After selected "Subject heading/ SU," clicked on "Look
up Subjects.” Searched “software,” selected “software, count: 1854492,” and clicked “Add to search.” “Software (computer) and “software (computers)” are also available as subjects, and are more specific on the topic. However, they are too restricted. Each subject only has less than 20 counts. In comparison, “software” as a subject is a little bit too broad, but it's better to be too broad than too restricted, especially when I’m not sure about the specific content of the article.

b. Keyboard*: All fields + text
i. Annotation: Asterisk is used to include variation of “keyboard” and “keyboards”

c. Cat OR cats: All fields + text
i. Annotation: Used “cat OR cats” to include variation of the word. I did not use asterisk because the root “cat” with up to 10 characters of word variations would retrieve too many irrelevant results. Additionally, I originally searched this keyword in all fields and texts, but the result turned out to be too broad and irrelevant; thus, I narrowed the search field to “Title.”

d. Resulted search command: su.Exact("software") AND keyboard* AND ti(cat OR cats)
i. Search result: 8 results

3. The first article shows name of the product, but not the inventor.

4. Searched: pawsense
a. Annotation: Since the name of the product is known, I directly searched the product name to retrieve information of the inventor.

5. The first article shows name of the software inventor.

3. Search Results
- Inventor: Chris Niswander of Tucson
- Product: PawSense

<table>
<thead>
<tr>
<th>Record #</th>
<th>Content</th>
</tr>
</thead>
</table>
| 1-1 | **Cat and mouse**

Abstract (summary)

How does the software work? According to BitBoost, cats have a distinct pattern of "typing" when they walk across a **keyboard**. **PawSense** is programmed to distinguish the pattern of paws from that of human fingers. After one or two steps, PawSense will detect the presence of a furry culprit.

Full Text

If you have a power protector and the latest virus-scanning software, you may think you've got your home office covered. But watch out; If you have feline
friends, you could still be in for a surprise.

Sometimes your computer keyboard is the quickest route from point A to point B on a cat's mission of vital, if well-concealed, importance. Cute as that may be, the result often isn't. Lost data, incorrect data inputs or crashed systems are just some of the hazards posed by wayward paws. To the rescue comes BitBoost Systems, a Tucson, Ariz.-based company that offers cat detector/cat repellent software called PawSense for Windows- or NT-based PCs.

How does the software work? According to BitBoost, cats have a distinct pattern of "typing" when they walk across a keyboard. PawSense is programmed to distinguish the pattern of paws from that of human fingers. After one or two steps, PawSense will detect the presence of a furry culprit. The software then blocks all keypad input and emits a sound -- such as that of a harmonica or hiss (you can also record your own) -- that cats find annoying. Visit www.bitboost.com.

[Graph Not Transcribed]

Word count: 195
Copyright Laurentian Technomedia Inc. Dec 2000

Indexing (details)
Cite
Subject
Cats;
Keyboards;
Software;
Product introduction;
PawSense
Company
BitBoost Systems
Product name
PawSense
Classification
9172: Canada
Title
Cat and mouse
The following is a list of Ig Nobel Prize winners by category, and a description of their work:

1. Psychology - David Dunning, Cornell University, and Justin Kruger, University of Illinois. For a report "Unskilled and Unaware of It: How Difficulties in Recognizing One's Own Incompetence Lead to Inflated Self-Assessments."

2. Literature - Jasmuheen (formerly Ellen Greve), Brisbane, Australia. For her book "Living on Light," which holds that though most people eat food, they don't need to. They just need to breathe and get the proper amount of sunlight.

3. Biology - Richard Wassersug, Dalhousie University, Canada. For his firsthand report "On the Comparative Palatability of Some Dry-Season Tadpoles from Costa Rica."

4. Physics - Andre Geim of the University of Nijmegen, The Netherlands, and Sir Michael Berry of Bristol University, United Kingdom. For using magnets to levitate a frog.

5. Chemistry - Donatella Marazziti, Alessandra Rossi and Giovanni B. Cassano of the University of Pisa, and Hagop S. Akiskal of the University of California. For their discovery that, biochemically, romantic love may be indistinguishable from having
severe obsessive-compulsive disorder.

8. Computer Science - Chris Niswander of Tucson. For inventing PawSense, software that detects when a cat is walking across your computer keyboard.

9. Peace - The British Royal Navy. For ordering its sailors to stop using live cannon shells, and to instead just shout "Bang!"

A Tucson company's product that shoos cats off of computer keyboards received a tongue-in-cheek honor last night as a development that "cannot or should not be reproduced."

BitBoost Systems' PawSense software was among 10 "goofy" developments awarded "Ig Nobel" prizes at Harvard University.

Chris Niswander developed PawSense, a $19.99 program that differentiates a feline's typing style from a human's, and then scares the animal away with annoying noises that include harmonica tunes.

Niswander, who traveled to the Cambridge, Mass., awards ceremony to accept his stylish concrete Ig Nobel medallion, attributed his good fortune to his sister's cat.

"Thanks, Bobo, for persuading me this was a good idea," he said.

Niswander said earlier that the product was developed after his sister and mother had problems with their cats trampling their computer keyboards, attracted by the warmth.
The company's www.bitboost.com Web site says that when cats walk or climb on a keyboard, they can enter random commands and data, damage computer files, or even crash the computer. That doesn't even consider the problems messy hairballs pose.

PawSense can recognize within one or two pawstrokes that your cat, and not you, is using your computer, the company claims.

For more information on the product, visit www.bitboost.com/catsoff or call 623-6326.

The Ig Nobel prizes prove that scientists do have a sense of humor, and also promote unique ideas.

"There are certain ideas that occur to only one person," said Marc Abrahams, master of ceremonies and editor of the Cambridge-based journal Annals of Improbable Research, which along with other Harvard groups presents the awards.

"To us, there was only one Einstein, there was only one Newton, and there was only one Niswander," he said.

Several award winners, including the Rev. Sun Myung Moon, founder of the Unification Church honored for bringing growth to the mass-marriage industry, "could not or would not be with us tonight," Abrahams said.

"Genuinely bemused genuine Nobel Laureates" were on hand to pass out the awards. One lucky program holder from the audience even won a date with a Nobel Prize winner at the quite unusual event.

Now if someone would just invent something to prevent cats from jumping on the cable television converter box and turning on the TV at 3 a.m.

* The Associated Press contributed to this story.
'Ig Nobel' prize honors local firm's PawSense
2. Search Steps
 1. Chose database: PsycINFO
 2. Looked up “pet therapy” in PsycINFO thesaurus
 a. Preferred controlled vocabulary term: Animal Assisted Therapy
 b. Related terms: Pets, Interspecies Interaction
 c. Broader term: Psychotherapeutic techniques
 3. Searched in advance searched mode:
 a. SU.EXACT("Animal Assisted Therapy")
 b. SU.EXACT("Cats")
 i. Annotation: My favorite animal is cat! Therefore, I decided to search on the topic of pet therapy with cat. To ensure that the search result is strictly related to “cat;” I searched in thesaurus to obtain the preferred controlled vocabulary.
 c. Resulted search command: SU.EXACT("Animal Assisted Therapy") AND SU.EXACT("Cats")
 i. Search result: 5 results

3. Search Results

<table>
<thead>
<tr>
<th>Record #</th>
<th>Content</th>
</tr>
</thead>
</table>
| 1-1 | Physiological responses by college students to a dog and a cat: Implications for pet therapy. | Physiological responses by college students to a dog and a cat: Implications for pet therapy.
 Somerville, John W.; Kruglikova, Yana A.; Robertson, Renee L.; Hanson, Leta M.; MacLin, Otto H.

Abstract (summary)

The effects of physical contact with a dog and a cat on blood pressure and pulse among male and female college students were examined. The final sample consisted of 62 participants (28 males and 34 females). It was tentatively hypothesized that participants would show a reduction in blood pressure while handling both a dog and a cat. It was also speculated that male and female participants would react differently to a dog versus a cat. There were no significant blood pressure or pulse differences, in response to a dog vs. a cat, nor were there significant gender differences although females generally had a lower blood pressure than males. There were no significant changes in blood pressure or pulse while participants held an animal, but a significant decrease in diastolic pressure occurred immediately following holding an animal. Results partially support previous findings of a reduction in blood pressure associated with animal contacts. Implications for pet therapy were discussed. (PsycINFO Database
Indexing (details)

Subject
Animal Assisted Therapy (major);
Blood Pressure (major);
College Students (major);
Human Sex Differences (major);
Physiological Correlates (major);
Cats;
Dogs;
Pets

Classification
3310: Psychotherapy & Psychotherapeutic Counseling

Age
Adulthood (18 yrs & older), Young Adulthood (18-29 yrs)

Population
Human, Male, Female

Identifier (keyword)
physiological responses, college students, pets, pet therapy, blood pressure, dogs, cats, gender differences

Methodology
Empirical Study, Quantitative Study

Title
Physiological responses by college students to a dog and a cat: Implications for pet therapy.

Author
Somerville, John W.; Kruglikova, Yana A.; Robertson, Renee L.; Hanson, Leta M.; MacLin, Otto H.

¹ University of Northern Iowa, Cedar Falls, IA, US

Contact individual
Somerville, John W., Dept. of Psychology, University of Northern Iowa, Cedar Falls, 50614, US

Publication title
North American Journal of Psychology
Question Number: ___4___

1. Search Plan

Important Ideas:

```
  CONCEPT 1  AND  CONCEPT 2  AND  CONCEPT 3
     OR
```

- Animal Assisted Therapy
- Dog
- Dogs
- Puppy
- Puppies

Searching Style: Building block

Database(s) – by industry group or specific ones:
PsycINFO

Fields or other limiters (dates, document types, etc.):
- Subject
- Language
- Peer-reviewed

Contingency Planning:
(what to do if I retrieve too little or too much?)
- **If I retrieve too little:** Expand restriction on search field.
- **If I retrieve too much:** Be more specific on keywords used in search command. Be more restrictive on subject(s) searched by choosing a narrower subject.

Other notes:

2. Search Steps

1. Chose databases: PsycINFO
2. Searched in advance search mode:
 a. SU.EXACT("Animal Assisted Therapy")
 b. SU.EXACT("Dogs")
 i. **Annotation:** I searched “dog” in the thesaurus. The preferred controlled vocabulary for “dog” is “dogs.” I decided to search in subject field instead of document title and text because search in subject field tends to retrieve less irrelevant results.
c. Resulted search command: su.Exact("software") AND keyboard* AND ti(cat OR cats)
 i. Search result: 79 results
3. Applied filter:
 a. Peer reviewed: Peer reviewed
 b. Language: English
 c. Search result: 51 results

3. Search Results

<table>
<thead>
<tr>
<th>Record #</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>An evaluation of dog-assisted therapy for residents of aged care facilities with dementia. Travers, Catherine; Perkins, Jacqueline; Rand, Jacqui; Bartlett, Helen; Morton, John. Anthrozoös 26.2 (Jun 2013): 213-225.</td>
</tr>
</tbody>
</table>

Abstract (summary)

Although some research suggests that dog-assisted therapy may be beneficial for people with dementia living in residential aged care facilities, the intervention has not been adequately investigated. To address this shortcoming, we conducted a randomized controlled trial of dog-assisted therapy versus a human-therapist-only intervention for this population. Fifty-five residents with mild to moderate dementia living in three Australian residential aged care facilities completed an 11-week trial of the interventions. Allocation to the intervention was random and participants completed validated measures of mood, psychosocial functioning, and quality of life (QOL), both prior to and following the intervention. No adverse events were associated with the dog-assisted intervention, and following it participants who had worse baseline depression scores demonstrated significantly improved depression scores relative to participants in the human-therapist-only intervention. Participants in the dog-assisted intervention also showed significant improvements on a measure of QOL in one facility compared with those in the human-therapist-only group (although worse in another facility that had been affected by an outbreak of gastroenteritis). This study provides some evidence that dog-assisted therapy may be beneficial for some residents of aged care facilities with dementia. (PsycINFO Database Record (c) 2013 APA, all rights reserved)(journal abstract)

Indexing (details)

Subject

Animal Assisted Therapy (major);
 Dementia (major);
 Dogs (major);
 Residential Care Institutions (major);
 Treatment Effectiveness Evaluation

Classification
3300: Health & Mental Health Treatment & Prevention

Age
Adulthood (18 yrs & older), Aged (65 yrs & older), Very Old (85 yrs & older)

Population
Human, Animal, Male, Female

Location
Australia

Identifier (keyword)
dog-assisted therapy, aged care, dementia, residential care institutions

Test and measure
Multidimensional Observational Scale for Elderly Subjects, Mini Mental State Examination, Quality of Life-Alzheimer’s Disease Scale, Geriatric Depression Scale—Short Form, 36-Item Short Form Health Survey

Methodology
Empirical Study, Quantitative Study

Title
An evaluation of dog-assisted therapy for residents of aged care facilities with dementia.

Author
Travers, Catherine¹; Perkins, Jacqueline; Rand, Jacqui²; Bartlett, Helen³; Morton, John

¹ Centre for Research in Geriatric Medicine, University of Queensland, Woolloongabba, QLD, Australia
² Centre for Companion Animal Health, School of Veterinary Science, University of Queensland, St. Lucia, QLD, Australia
³ Monash University, Churchill, VIC, Australia

Author e-mail address
catherine.travers@qut.edu.au

Contact individual
Travers, Catherine, University of Queensland, Centre for Research in Geriatric Medicine, Princess Alexandra Hospital, Level 2, Building 33, Ipswich Rd, Woolloongabba, 4102, Australia, catherine.travers@qut.edu.au

Publication title
Anthrozoös

Grant/sponsorship
Sponsor:
JO & JR Wicking Trust
Recipient:
No recipient indicated

Volume
26

Issue
2

Pages
213-225

Publication date
Jun 2013

Format covered
Print

Publisher
Berg Publishers (, United Kingdom)
;
Purdue University Press (, US)

Other publication title
Journal of the Delta Society

ISSN
0892-7936

Peer reviewed
Yes

Language
English

Document type
Journal, Journal Article, Peer Reviewed Journal

Number of references
Developing effective animal-assisted intervention programs involving visiting dogs for institutionalized geriatric patients: A pilot study.
Berry, Alessandra; Borgi, Marta; Terranova, Livia; Chiarotti, Flavia; Alleva, Enrico; et al. Psychogeriatrics 12.3 (Sep 2012): 143-150.

Abstract (summary)
Aim: An ever increasing interest in the therapeutic aspects of the human-animal bond has led to a proliferation of animal-assisted interventions (AAI) involving dogs. However, most of these programs lack a solid methodological structure, and basic evaluative research is needed. The purpose of this study was to test the value of dog-assisted interventions as an innovative tool to increase quality of life in the geriatric population. Methods: Nineteen patients (men and women) with a mean age of 85 years participated in the study. Interactions between patients and visiting dogs occurred either in a social situation (socialization sessions) or in a therapeutic context (physical therapy sessions). We derived and characterized a specific ethogram of elderly-dog interactions aimed at evaluating the effectiveness of visiting dogs in improving mood, catalyzing social interactions and reducing their everyday apathetic state. Cortisol levels were also measured in the saliva, and depressive state was evaluated. Results: Overall, results show a time-dependent increase in
social behaviour and spontaneous interactions with the dogs. Dog-mediated interactions affected the daily increase in cortisol levels, thus having an 'activational effect', in contrast to the apathetic state of institutionalized elderly. Conclusions: Dog-mediated intervention programs appear to be promising tools to improve the social skills and enrich the daily activities of the institutionalized elderly. (PsycINFO Database Record (c) 2012 APA, all rights reserved)(journal abstract)

Indexing (details)

Subject
Animal Assisted Therapy (major);
Dogs (major);
Geriatric Patients (major);
Institutionalization (major);
Interspecies Interaction (major);
Intervention
Classification
3300: Health & Mental Health Treatment & Prevention
Age
Adulthood (18 yrs & older), Aged (65 yrs & older), Very Old (85 yrs & older)
Population
Human, Male, Female, Inpatient
Location
Italy
Identifier (keyword)
animal-assisted intervention, visiting dogs, institutionalized geriatric patients,human-animal bond
Test and measure
Mini Mental State Examination, Geriatric Depression Scale
Methodology
Empirical Study, Quantitative Study
Title
Developing effective animal-assisted intervention programs involving visiting dogs for institutionalized geriatric patients: A pilot study.
Author
Berry, Alessandra ¹; Borgi, Marta ¹; Terranova, Livia ¹; Chiarotti, Flavia ²; Alleva, Enrico ¹; Cirulli, Francesca ¹
1 Behavioural Neuroscience Unit, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanita, Rome, Italy francesca.cirulli@iss.it
2 Neurotoxicology and Neuroendocrinology Unit, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanita, Rome, Italy

Author e-mail address
francesca.cirulli@iss.it

Contact individual
Cirulli, Francesca, Behavioural Neuroscience Unit, Department of Cell Biology and Neurosciences, Istituto Superiore Di Sanita, Viale Regina Elena 299, Rome, I-00161, Italy, francesca.cirulli@iss.it

Publication title
Psychogeriatrics

Grant/sponsorship
Sponsor:
Istituto Superiore di Sanità
Other details:
Effects of dog-assisted therapies on physical and psychological well-being in the institutionalized elderly
Recipient:
No recipient indicated;
Sponsor:
Nando Peretti Foundation
Other details:
Collaboration with the Associazione Nazionale Uso del Cane per Scopi Sociali
Recipient:
No recipient indicated

Volume
12
Issue
3
Pages
143-150
Publication date
Sep 2012
<table>
<thead>
<tr>
<th>Format covered</th>
<th>Electronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publisher</td>
<td>Wiley-Blackwell Publishing Ltd. (United Kingdom); Blackwell Publishing (United Kingdom)</td>
</tr>
<tr>
<td>ISSN</td>
<td>1346-3500</td>
</tr>
<tr>
<td>eISSN</td>
<td>1479-8301</td>
</tr>
<tr>
<td>Peer reviewed</td>
<td>Yes</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Document type</td>
<td>Journal, Journal Article, Peer Reviewed Journal</td>
</tr>
<tr>
<td>Number of references</td>
<td>33</td>
</tr>
</tbody>
</table>

Publication history

- **Accepted date**: 21 Nov 2011
- **First submitted date**: 20 Jul 2011
- **Release date**: 05 Nov 2012 (PsycINFO)
- **Accession number**: 2012-25930-001
- **PubMed ID**: 22994611
- **ProQuest document ID**: 1136157726
Animal-assisted therapy at an outpatient pain management clinic.

Abstract (summary)

Objective: The objective of this study was to evaluate the effects of brief therapy dog visits to an outpatient pain management facility compared with time spent in a waiting room. Design: The design of this study is open-label. Setting: This study was conducted in a university tertiary care adult chronic pain outpatient clinic. Subjects: The subjects of this study include outpatients, adults accompanying outpatients to their appointments, and clinic staff. Intervention: Participants were able to spend clinic waiting time with a certified therapy dog instead of waiting in the outpatient waiting area. When the therapy dog was not available, individuals remained in the waiting area. Outcome Measures: Self-reported pain, fatigue, and emotional distress were recorded using 11-point numeric rating scales before and after the therapy dog visit or waiting room time. Results: Two hundred ninety-five therapy dog visits (235 with patients, 34 family/friends, and 26 staff) and 96 waiting room surveys (83 from patients, 6 family/friends, and 7 staff) were completed over a 2-month study period. Significant improvements were reported for pain, mood, and other measures of distress among patients after the therapy dog visit but not the waiting room control, with clinically meaningful pain relief (decrease ≥2 points) in 23% after the therapy dog visit and 4% in the waiting room control. Significant improvements were likewise seen after therapy dog visits for family/friends and staff. Conclusions: Therapy dog visits in an outpatient setting can provide significant reduction in pain and emotional distress for chronic pain patients. Therapy dog visits can also significantly improve emotional distress and feelings of well-being in family and friends accompanying patients to appointments and clinic staff.
Indexing (details)

Subject
Animal Assisted Therapy (major);
Chronic Pain (major);
Outpatients (major);
Pain Management (major);
Clinics;
Dogs

Classification
3310: Psychotherapy & Psychotherapeutic Counseling
3290: Physical & Somatoform & Psychogenic Disorders

Age
Adulthood (18 yrs & older)

Population
Human, Animal, Male, Female, Outpatient

Location
US

Identifier (keyword)
outpatient, pain management clinic, animal assisted therapy, dogs, emotional
distress, chronic pain patients

Test and measure
Ultra-Brief Mood Disorder Screening Tool, Numerical Rating Scale, Patient Health
Questionnaire-2, Patient Health Questionnaire-4

Methodology
Empirical Study, Quantitative Study

Title
Animal-assisted therapy at an outpatient pain management clinic.

Author
Marcus, Dawn A.; Bernstein, Cheryl D.; Constantin, Janet M.; Kunkel, Frank
A.; Breuer, Paula; Hanlon, Raymond B.

1 Department of Anesthesiology & Critical Care Medicine, University of Pittsburgh,
Pittsburgh, PA, US MarcusD@upmc.edu
4. Analysis

I have never utilized the thesaurus for controlled vocabulary in my hand-on search experiences before, and I appreciated the opportunity offered in this exercise. Controlled vocabulary systematically creates a one-to-one relationship between each term and its meaning, effectively help to avoid confusion of synonymy and homonymy. Thesaurus, then informs us the preferred term for the particular database, as well the term’s relationship to other vocabularies. Utilization of controlled vocabulary and thesaurus is extremely useful during search in Subject. Instead of letting system auto-complete to help me guess the subject, it is more direct and easier to look up the subject in the thesaurus. By locating and searching with accurate subject terms, I would be able to retrieve results that better fulfill my information need.

The inquiry asks for studies of inpatient subjects and dogs as therapy animals; thus, I simply searched with combination of the two primary subjects: Animal Assisted Therapy and Dogs. Because I did not specify more details in my search command, some results retrieved are not necessarily from the approach that I was looking for. For instance, one article discusses the benefit of dog therapy for preschool students. The article is about “animal assisted therapy” and “dog,” but does not discuss effect of dog therapy on the patient group. Some other studies focus on effectiveness of dog therapy and analysis on dogs in dog therapy instead of the interaction between patients and dog therapy. To determine results that truly satisfy the information need, all results should be carefully examined.

Overall, utilization of subject controlled vocabulary and thesaurus helps make the search efficient and effective. I was satisfied with the results retrieved.
Question Number: ___5___

2. Search Steps
 1. Chose database: Social SciSearch
 2. Searched in command line mode: rf(dreyfus hl LNK 1992)
 a. Annotation: The database Prosheet does not specify exactly how journal titles should be abbreviated in the command; thus, I started with just the author’s name and article published year. I looked into the search results to find the desired reference article and how it is cited. The first article cites the article as: DREYFUS, HL. WHAT COMPUTERS STILL, 1992.
 3. Searched in command line mode: rf(dreyfus hl LNK WHAT COMPUTERS STILL LNK 1992)
 a. Search result: 86 results
 4. Sorted result by publication date (most recent first)

3. Search Results
 - Total number of records: 86
 - Most recent record: published in 2014

<table>
<thead>
<tr>
<th>Record #</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Examining arguments against quantitative research: "Case studies" illustrating the challenge of finding a sound philosophical basis for a human sciences approach to psychology Westerman, Michael A. NEW IDEAS IN PSYCHOLOGY 32 (Jan 2014): 42-58.</td>
</tr>
</tbody>
</table>

Abstract (summary)
This article offers a close examination of critiques of quantitative research by Michell (2011), Marecek (2011), and Morawski (2011). One goal is to show that these three critics actually share with most mainstream quantitative researchers commitments to the Cartesian framework, even though this is not obvious because Cartesianism can appear in different guises. As a result of these commitments, the three theorists advance criticisms of mainstream quantitative research that fail to identify its key failings, put forward flawed views about how we should conduct research, and offer misguided criticisms of an approach I advocate called explicitly interpretive quantitative research. Another goal is to use the examination of the three critiques as a vehicle for clarifying the participatory perspective, a philosophical viewpoint that departs from the Cartesian framework. With regard to research methodology, the participatory perspective provides the basis for explicitly interpretive quantitative research, leads to ideas about changes
we should make in how we conduct qualitative research, and treats quantitative
and qualitative research as fundamentally similar because both should be pursued
as interpretive modes of inquiry. I suggest that my analyses of the three critiques
of quantitative research - or "case studies," as I call these analyses - also may
prove useful to researchers and theorists who want to develop a human sciences
approach to other issues besides research methodology by helping them (1)
recognize when lines of thinking that seem to depart from the mainstream
actually represent variants of Cartesianism, and (2) consider what the
participatory perspective might have to offer if they were to use it as the
philosophical basis for their efforts. (C) 2013 Elsevier Ltd. All rights reserved.

References

BICKHARD, MH. CONSTRUCTIVISM ED, 1995, 229.
BICKARD, MH. SCI ED, 1997, 6, 29.
BICKHARD, M. SYNTHESE, 2009, 166, 547. DOI 10.1007/s11229-008-9375-x
CHOMSKY, N. LANGUAGE MIND, 1972.
DAWSON, TL. NEW IDEAS PSYCHOL, 2006, 24, 229. DOI 10.1016/j.newideapsych.2006.10.001
DEWEY, J. PSYCHOL REV, 1896, 3, 357. DOI 10.1037/H0070405
DREYFUS, HL. WHAT COMPUTERS STILL, 1992.
FISHMAN, DB. CASE PRAGMATIC PSYCH, 1999.
FOGEL, A. DEV RELATIONSHIPS OR, 1993.
GANTT, EE. CRITICAL THINKING PS, 2005, 81.
GERGEN, KJ. RELATIONAL BEING SEL, 2009.
GREENWALD, AG. PSYCHOL REV, 1995, 105, 4. DOI 10.1037/0033-295X.102.1.4
HOYT, WT. J COUNS PSYCHOL, 2007, 54, 201. DOI 10.1037/0022-0167.54.2.201
KAYE, K. HDB FAMILY PSYCHOL T, 1985, 1, 38.
KIRCHNER, SR. CRITICAL THINKING PS, 2005, 267.
KYNGDON, A. MEASUREMENT, 2011, 9, 159.
MERLEAUPONTY, M. VISIBLE INVISIBLE, 1968.
MERLEAUPONTY, M. PHENOMENOLOGY PERCEP, 1962.
MORAWSKI, J. THEOR PSYCHOL, 2011, 21, 260. DOI
<table>
<thead>
<tr>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLKINGHORNE, DE. METHODOLOGY HUMAN SC, 1983.</td>
</tr>
<tr>
<td>RENNIE, DL. PSYCHOL METHODS, 2012, 17, 385. DOI 10.1037/a0029250</td>
</tr>
<tr>
<td>RICHARDSON, FC. REENVISIONING PSYCHO, 1999.</td>
</tr>
<tr>
<td>ROSENBAUM, PJ. THEOR PSYCHOL, 2011, 21, 47. DOI 10.1177/0959354309352913</td>
</tr>
<tr>
<td>SKINNER, BF. VERBAL BEHAV, 1957.</td>
</tr>
<tr>
<td>SLIFE, BD. CRITICAL THINKING PS, 2005, 121.</td>
</tr>
<tr>
<td>SLIFE, BD. WHATS RES DISCOVERIN, 1995.</td>
</tr>
<tr>
<td>STEVENS, SS. HDB EXPT PSYCHOL, 1951, 1.</td>
</tr>
<tr>
<td>STEVENS, SS. SCIENCE, 1946, 103, 677. DOI 10.1126/SCIENCE.103.2684.677</td>
</tr>
<tr>
<td>STILES, WB. CLIN PSYCHOL REV, 1993, 13, 593.</td>
</tr>
<tr>
<td>STRUPP, HH. CLIN PSYCHOL-SCI PR, 1997, 4, 76.</td>
</tr>
<tr>
<td>TOOMELA, A. INTEGR PSYCHOL BEHAV, 2007, 41, 75. DOI 10.1007/s12124-007-9005-z</td>
</tr>
<tr>
<td>Author</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Westerman, M.A.</td>
</tr>
<tr>
<td>Westerman, M.A.</td>
</tr>
<tr>
<td>Westerman, M.A.</td>
</tr>
</tbody>
</table>

Yu Ting Lin
LIBR 244 Exercise 2
Indexing (details)

Subject
QUALITATIVE RESEARCH; INTERPERSONAL-BEHAVIOR; COUNSELING-PSYCHOLOGY; PSYCHOTHERAPY PROCESS; ENTERPRISE; NUMBERS; MODEL

Classification
VJ: PSYCHOLOGY, MULTIDISCIPLINARY
VX: PSYCHOLOGY, EXPERIMENTAL

Identifier (keyword)
Quantitative methods, Qualitative methods, Explicitly interpretive quantitative research, Cartesian framework, Participatory perspective, Human sciences approach

Title
Examining arguments against quantitative research: "Case studies" illustrating the challenge of finding a sound philosophical basis for a human sciences approach to psychology

Author
Westerman, Michael A.

Correspondence author
Westerman, MA NYU, Dept Psychol, 6 Washington Pl, 4th Floor, New York, NY 10003 USA.

Author affiliation
NYU, Dept Psychol, New York, NY 10003 USA

Language
English

Language of abstract
English

Document type
Article

Publication title
<table>
<thead>
<tr>
<th>NEW IDEAS IN PSYCHOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>Pagination</td>
</tr>
<tr>
<td>42-58</td>
</tr>
<tr>
<td>Page count</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>ISSN</td>
</tr>
<tr>
<td>0732-118X</td>
</tr>
<tr>
<td>Publication type</td>
</tr>
<tr>
<td>Journal</td>
</tr>
<tr>
<td>Publisher</td>
</tr>
<tr>
<td>PERGAMON-ELSEVIER SCIENCE LTD</td>
</tr>
<tr>
<td>Publisher location</td>
</tr>
<tr>
<td>THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND</td>
</tr>
<tr>
<td>Journal issue identifier</td>
</tr>
<tr>
<td>280FJ</td>
</tr>
<tr>
<td>Document delivery available</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>DOI</td>
</tr>
<tr>
<td>http://dx.doi.org/10.1016/j.newideapsych.2013.08.002</td>
</tr>
<tr>
<td>Number of references</td>
</tr>
<tr>
<td>76</td>
</tr>
<tr>
<td>Publication date</td>
</tr>
<tr>
<td>Jan 2014</td>
</tr>
<tr>
<td>Date created</td>
</tr>
<tr>
<td>2014-01-10</td>
</tr>
<tr>
<td>Source attribution</td>
</tr>
<tr>
<td>SocialSciSearch, © Publisher specific</td>
</tr>
<tr>
<td>Accession number</td>
</tr>
<tr>
<td>000329013800004</td>
</tr>
<tr>
<td>Document URL</td>
</tr>
<tr>
<td>http://search.proquest.com/professional/docview/1487989177?accountid=143640</td>
</tr>
<tr>
<td>Copyright</td>
</tr>
<tr>
<td>Copyright (c) 2014 Institute for Scientific Information</td>
</tr>
</tbody>
</table>
4. Analysis

This is another new search approach for me! In comparison to search the author's name, article title and publication year as individual concept in document text, utilization of “reference/ rf” command is a more efficient method to search articles that cite a particular book. However, my search begins with difficulty understanding the structure of “rf” command. The Prosheet mentions to include author name, journal abbreviation, volume, issue, publication year, and join each element with “LNK” in the command. One example is provided. However, the Prosheet does not have any details regarding: how to structure author's name, how to abbreviate the journal title and how to include other elements. Without detailed explanation, I could only start with trial and error.

Gladly, my first search with author name and publication year returned results that include the journal abbreviation. My second search with more complete search command details retrieve a more accurate result. The ability to sort search result with different priority is also a useful tool, which enables me to find the most recent record without going through all records.
Google has shaped my search habit prior taking this class. I am used to search everything in natural language in this “all-in-one” search engine. However, this class let me realized that to optimize search efficiency, search not only requires planning but also structure. A combination of building block, pearl growing and lawn mowing should be utilized depends on my information need. Though I prefer lawn mowing than pearl growing, Mann’s perspective of tightest fit is an extremely effective method for known item search. On the other hand, lawn mowing is often used for subject searches.

Also mentioned in several classmates’ discussion posts, combination of natural language and controlled vocabulary is another critical strategy that can contribute towards increase in efficiency. Before, I always search with strictly natural language in document text and title, just like what I would do in Google searches. However, more than half of the time, retrieved results are not fully fulfill my information need. With proper controlled vocabulary for subject field, accuracy of my search in this exercise greatly improved. Less irrelevant records were retrieved. Natural language search would continue to be one important element of my search, and I believe, incorporation of controlled vocabulary would help me achieve increased efficiency and accuracy.